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8-Chloroadenosine Induced HL-60 Cell Growth
Inhibition, Differentiation, and G0/G1 Arrest
Involves Attenuated Cyclin D1 and Telomerase
and Up-Regulated p21WAF1/CIP1
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Abstract 8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadeno-
sine 30,50-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-
chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G0/G1 phase arrest and terminates
cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G0/G1 arrest is
independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine,
whereas the cyclin-dependent kinases inhibitor p21WAF1/CIP1 is up-regulated. 8-Chloroadenosine has less effect on the
expressions of cyclin-dependent kinase (cdk)2 and cdk4, G1 phase cyclin-dependent kinases, and only moderately
induces the expression of transforming growth factor b1 (TGFb1) and the mitotic inhibitor p27KIP1. Telomerase activity is
reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic
activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination
of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21WAF1/CIP1 that arrest cell-cycle
progression at G0/G1 phase and terminate cell differentiation. J. Cell. Biochem. 97: 166–177, 2006. � 2005 Wiley-Liss, Inc.
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Intracellular adenosine 30,50-cyclic-monophos-
phate (cAMP) and its chemical analogues
regulate the growth of carcinoma cells. For
example, 8-chloroadenosine 30,50-cyclic-mono-
phosphate (8-Cl-cAMP), inhibits various type
of carcinomas in vitro and in vivo, and has
undergone clinical trials as an anti-cancer drug

[Ally et al., 1989; Ramage et al., 1995; Tortora
et al., 1995, 1997; Cummings et al., 1996;
Langdon et al., 1998]. Pharmacokinetic studies
have shown that the anti-cancer effect of 8-Cl-
cAMP involves an active metabolite, 8-chloroa-
denosine [Langeveld et al., 1992; Cummings
et al., 1994; Halgren et al., 1998; Robbins et al.,
2001]. Further studies confirm similar cyto-
static effects of these two molecules against
tumor cells suggesting the involvement of a
common signaling pathway in the anti-neoplas-
tic process [Gandhi et al., 2001].

8-Chloroadenosine induces cell growth inhi-
bition, differentiation, and apoptosis in a spec-
trum of human carcinomas [Pepe et al., 1991;
Carlson et al., 2000; Yin et al., 2001]. Early
studies demonstrated that both 8-Cl-cAMP and
8-chloroadenosine regulate the expression of
protein kinase A (PKA) regulatory subunit
genes, which was proposed as the mechanism
for their anti-proliferative effects [Tortora et al.,
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1989, 1997; Rohlff et al., 1993; Langeveld et al.,
1997; Noguchi et al., 1998]. In human promye-
locytic leukemia HL-60 cell, 8-Cl-cAMP sup-
pressesPKARIa expression [Rohlff et al., 1993],
inhibits cell proliferation, terminates cell differ-
entiation, and delays cell-cycle progression
[Pepe et al., 1991]. However, mechanisms for
8-Cl-cAMP in affecting cell-cycle kinetics,
growth inhibition, and differentiation in HL-
60 cells are not fully understood. Recently,
conflicting data have attributed effects of 8-Cl-
cAMPand8-chloroadenosine on carcinoma cells
to the regulations of PKA regulatory subunits
expression, and may be unrelated [Carlson
et al., 2000; Lamb and Steinberg, 2002]. Micro-
array data have shown that 8-Cl-cAMP and
8-chloroadenosine are closely parallel in down-
regulation of proliferation and transformation
genes in human neuroblastoma cells but differ
in the up-regulation of differentiation and
development genes [Park et al., 2002].
Chemical-induced growth arrest and dif-

ferentiation in HL-60 cell has been correlat-
ed to cell cycle related-cyclins, kinase, and
kinase inhibitors [Burger et al., 1994; Jiang
et al., 1994; Wang et al., 1996]. G0/G1 arrest
related—but apoptosis independent—cell dif-
ferentiation was observed when phorbol ester
(12-O-tetradecanoylphorbol-13-acetate (TPA)),
1,25-dihydroxyvitamin D3 (1,25D3), retinoic
acid (RA), or DMSO were used to maturate
HL-60 cells towards granulocyte and/or mono-
cyte phenotype [Bestilny et al., 1996; Wang and
Studzinski, 1997]. Further, the expression of
telomerase, a critical enzyme involved in main-
taining carcinoma cell immortality and prolif-
eration, is also down-regulated in HL-60 cell
during the terminal differentiation induced by
TPA, RA, and DMSO [Bestilny et al., 1996].
However, these critical proteins in 8-chloroa-
denosine-treatedHL-60 cell are unknown.Here
we report that 8-chloroadenosine induce
maturation of HL-60 phenotype towards gran-
ulocytes and changes of proteins correlated to
G0/G1 arrest, and reduction of telomerase
activity.

MATERIALS AND METHODS

Materials

8-Chloroadenosine was synthesized and pro-
vided by Dr. L.H. Zhang. Other chemicals
were purchased from Sigma (St. Louis, MO). 8-
Chloroadenosine and TPA were dissolved in

DMSO.Final concentration forDMSOwas0.1%
and was used alone as a vehicle control.

Cell Culture

Human promyelocytic leukemia HL-60 cells
were maintained as a suspension in RPMI 1640
medium supplemented with 10% FBS and
cultured at 378C, 5% CO2/95% air. The viability
of cell in culture was monitored by trypan blue
exclusion.

MTT Method for Cell Growth

HL-60 cell growth was measured by
methylthiazoletetrazolium (MTT) assay [Hirano
et al., 1994]. Briefly, 4� 103 cells/well were
seeded to 96-well plates and cultured with
different concentrations of 8-chloroadenosine
for 7 days or as indicated, and compared to
vehicle control (0.1% DMSO). Then, MTT stock
solution was added (50 mg/well) and continu-
ously cultured for another 3 h. Suspensions of
HL-60 cells were collected by low speed centri-
fugation and cell pellets were dissolved in
DMSO.OD570 nmwas read onmicroplate reader
(Bio-Rad model 450) with OD665 nm as the
reference. A relative growth inhibition rate
was calculated as: OD570 nm Sample� 100%/
OD570 nm Control.

NBT Reduction for Cell Differentiation

Morphological assessment of differentiation
of HL-60 cell was performed by nitro blue
tetrazolium (NBT) reduction as described pre-
viously [Newberger et al., 1979; Bestilny et al.,
1996]. Briefly, 2� 104 cells/ml were seeded
in 35 mm dishes with 8-chloroadenosine and
cultured for 5 days or as indicated. Then, cells
were incubated with continuous shaking for
60 min at 378C with 0.2% NBT in PBS contain-
ing TPA (200 ng/ml). Cytospin slides were
prepared in Gimsa-Wright staining. The per-
centage of cells (200 cells for each slide) contain-
ing reduced blue-black formazan deposits was
determined.

Quantification of Cell Cycle and Apoptosis
by Flow Cytometry

HL-60 cells were assessed for cell-cycle
analysis and apoptosis as described [Nicoletti
et al., 1991]. Briefly, 1� 106 cells were collected
by a centrifugation at 200g and fixation in ice-
cold 70% ethanol for 45 min. Cells were washed
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and re-suspended in 1 ml of PBS. Flow cyto-
metry was performed after addition of pro-
pidium iodide (50 mg/ml with 0.1% Triton
X-100) for 15 min at room temperature. DNA
content was measured with a FACS-scan
(Becton Dickinson, SCANVantage SE), and
cell-cycle distribution and apoptotic content in
sub-diploid were calculated using CellQuest
software.

DNA Fragmentation

DNA fragmentation was measured using a
DNA/histone-complex ELISA kit (Roche) for
10,000 cells/well of HL-60 cultured in 96-wells
plate as described [Zhu et al., 2005]. After 24 h,
cells were dosed with 8-chloroadenosine and
grown for additional 24–120 h. Comparative
values of DNA fragmentation between controls
and treatments were based on using the same
cell number in each assay.

Western Blots Analysis of Cell Extracts

Protein samples in whole cell lysates were
prepared from 8-chloroadenosine and TPA
(100 ng/ml) treated HL-60 cells and Wes-
tern blots performed as previously described
[Thompson et al., 2002]. Briefly, 100 mg proteins
were subjected to 12.5% polyacrylamide gel
electrophoresis followed by transfer to nitro-
cellulose membrane. Antibodies for cyclin
D1 (SC-246), c-myc (SC-042), p21WAF1/CIP1

(SC-397), p27KIP1 (SC-528), cyclin-dependent
kinase-2 (cdk2) (SC-163), cdk4 (SC-260), trans-
forming growth factor b1 (TGFb1) (SC-146), b-
actin, biotin labeled secondary antibodies, and
streptavidin/alkaline phosphatasewere all pur-
chased from Santa Cruz Biotechnology (Santa
Cruz, CA). Immunoblots were quantified by
densitometry (AlphaEase DIAS, CA) and ex-
pressed as percentage of control, mean�SEM,
n¼ 4 for cyclin D1 and p21WAF1/CIP1 and n¼ 3
for all others.

Measurement of Telomerase Activity by
TRAP-ELISA Method in Cell Extracts

Cell extractions and assays for telomerase
activity in HL-60 cells were performed using
telomere repeat amplification protocol (TRAP)–
PCR–ELISA Kits (Roche Applied Science,
Indianapolis, IN). Briefly, 2� 106 cells after 8-
chloroadenosine treatment were collected and
washed twice with PBS and then suspended in
lysis reagent on ice for 30min. Cell lysates were
centrifuged at 16,000g for 20 min at 48C. The

supernatants were collected and protein con-
centration measured by Dc Protein Assay Kits
(Bio-Rad, Hercules, CA). Substrate oligonucleo-
tide, biotin 50-tip labeled P1-TS primer used for
the telomerase-catalyzed primer elongation,
PCR amplification P2 primer, and cell extracts
(3 mg total protein) were added to the reaction
mixture (50 ml). Cell extract pre-treated with
1 mg/ml RNase A or isolated from HEK 293 cell
was used as negative or positive controls. TRAP
reactions were performed in a PCR thermal
cycler (GeneAmp9600,PerkinElmer) including
telomerase-catalyzed primer elongation at 258C
for 20 min, telomerase inactivation for 5 min at
948C, and PCR amplification for 30 cycles at
948C for 30 s, 508C for 30 s, and 728C for 90 s.
Samples were then kept at 728C for 10 min and
maintained at 48C. The amplification product
(5 ml) with denaturation reagent (20 ml) were
incubated at room temperature for 10 min
before addition of hybridization buffer (225 ml)
containing digoxigenin-labeled probe with com-
plementary telomeric repeat sequences. The
mixture (100 ml) was added to a streptavidin
pre-coatedmicrotiter plate and incubated for 2h
at 378C in shaking bath (300 rpm). After
washing, peroxidase substrate tetramethylbe-
zidine was added and OD655 nm determined.

RESULTS

8-Chloroadenosine Inhibits HL-60 Cells
Growth and Promotes Cell Differentiation

Towards Granulocytes

8-Chloroadenosine led to growth inhibition in
HL-60 cells after 5–7 days treatment (Fig. 1A)
with an IC50 value of 1.35 mMat day 7 (Fig. 1B).
Prior to maximal growth inhibition, morpholo-
gical changes of HL-60 cells were observed after
3 days of treatment with 8-chloroadenosine. A
granulocyte-like maturation of HL-60 cell was
observed with 2–16 mM range of 8-chloroade-
nosine. These effects were characterized by a
decreased cell size and the appearance of less
prominent nucleoli along with segment or band
nuclei (pictures not shown). Biochemical char-
acterization of granulocyticmaturation induced
by 8-chloroadenosine in HL-60 cells was fur-
ther confirmed by measuring reduction of
water-soluble dye NBT to formazan deposits
[Newberger et al., 1979; Bestilny et al., 1996].
The maximal NBT reduction (up to 40%) for
8-chloroadenosine (16 mM) treated HL-60
cells was observed at day 5–9, with a 50% of
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maximum of NBT reduction (EC50) observed at
5.75 mM at day 5 (Fig. 1A,B).

8-Chloroadenosine Induces G0/G1

Arrest and Apoptosis

Flow cytometric analysis indicated that 8-
chloroadenosine induced a G0/G1 phase accu-

mulation, reduction of cells in the S phase and
G2þMphase after 24h treatment (Table I). The
percentage of cells in the G0/G1 phase was
increased from 34.5� 2.3% (control) to 65.1�
3.7% (16 mM of 8-chloroadenosine, P< 0.05),
whereas the percentage of cells in the S phase
were decreased from 55.5� 3.2% to 31.3� 1.1%
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Fig. 1. Growth inhibition and granulocytic differentiation
of HL-60 cell by 8-chloroadenosine. A: Time course for 8-
chloroadenosine inhibited cell growth (*) and nitro blue
tetrazolium (NBT) reduction (r). HL-60 cells were continuously
cultured in 8-chloroadenosine (16 mM) for 9 days. B: Dose
response for 8-chloroadenosine inhibited cell growth (day 7) and
NBT reduction (day 5). Cell proliferation and differentiation were
measured every day by methylthiazoletetrazolium (MTT) and
NBT reduction. Relative growth rate in 8-chloroadenosine
treated cells were normalized with vehicle control (0.1% DMSO)

at each day, and indicated as 100% for staring at day zero for time
course and concentration zero for dose response at day 7. NBT
positive cells treated by 8-chloroadenosine were expressed as the
percentage of total cells of measurement (200 cells for each
sample of slide). NBT positive in vehicle controls at day 0, 3, 5, 7,
and 9 were also performed and all less than 5% that were
indicated at day 0 and concentration zero for day 5. Values
represent the mean� SEM of five experiments performed in
triplicate.
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(P< 0.05), and in the G2þM phases were
also decreased from 10.0� 0.9% to 3.7� 1.1%
(P< 0.05). Similar effects on G0/G1 arrest with
treatment of 8-chloroadenosine at longer time
period of 48–96 h but were not sustained at
120 h (not shown). A lower rate of apoptosis for
8-chloroadenosine was maintained over 120 h
at dose of 2 mM (8.24� 1.82%) and at 24 h at
16 mM concentration (7.77� 1.42%, Table II).
The apoptotic rate was increased only when the
concentration of 8-chloroadenosinewas increas-
ed (66–330 mM) above the concentrations to
affect growth, differentiation and G0/G1 phase
arrest in these cells.

DNA fragmentation data confirmed that 8-
chloroadenosine-induced apoptosis at 24 h had
only occurred at a high dose range, 66 mM
(Fig. 2). Such increased rates of DNA fragmen-
tation reached maximum at 72 h and showed
a dose-related manner at 8–66 mM con-
centrations range, and the rate was decreased

when the treatment time was prolonged to
96–120 h. At 8 and 16 mM 8-chloroadenosine,
the DNA fragmentation was increased 30%–
50% of controls at 72–120 h. There was no
change of DNA fragmentation for 2 mM 8-
chloroadenosine at 24–96 h treatment, and
less than a 20% increase was found at 120 h
treatment, consistent with those observations
by flow cytometry assay.

Reduced Cyclin D1 Expression in
8-Chloroadenosine Treated HL-60 Cells

Western blots indicated that cyclin D1 ex-
pression inHL-60 cell was decreased when cells
were treated with 8-chloroadenosine. The inhi-
bitory effect of 2 mM8-chloroadenosinewas seen
at 24 h (19� 10% of control, P< 0.05) and this
effect was maintained for 48–120 h (39� 8%,
48h;27� 5%,72h;12� 4%,96h;15� 5%,120h;
Fig. 3A, top panel). The inhibition of cyclin D1
expression was enhanced when the 8-chloroa-
denosine concentrations were increased from 2
to 16 mMat 24 h (Fig. 3A, bottom panel, 16� 5%
for 2 mM 8-chloroadenosine and were not
detectable at 4–16 mM). Conversely, TPA (100
ng/ml), a chemical inducer of HL-60 cell
maturation along monocytic lineage, induced
cyclin D1 expression at 24 h (305� 39% of con-
trol, P< 0.05). The expression of two cyclin-
dependent kinases, cdk2 and cdk4 (both closely
associated with cyclin D1), was only slightly
reduced following 8-chloroadenosine treatment
(2 mM, 24–120 h) and reduced in TPA-induced
differentiation cells (100 ng/ml, 24 h) as com-
pared with the vehicle controls (Fig. 3B, top two
panels). TheTPA-induced increases in cyclinD1
and decreases in cdk2/cdk4 are consistent with
previous reports [Akiyama et al., 1993; Burger
et al., 1994; Horiguchi-Yamada et al., 1994].

TABLE I. Changes in HL-60 Cell-Cycle Phase Distribution by
8-Chloroadenosine

Group Concentration (mM)

Cell-cycle phase distribution (%)a

G0/G1 S G2þM

Control — 34.5� 2.3 55.5� 3.2 10� 0.9
8-ClA 2 54.8� 4.6* 39.1� 2.7* 6.1� 1.4*

4 58.0� 2.1* 37.7� 1.9* 4.3� 0.7*
8 65.2� 4.3* 32.6� 3.0* 2.1� 1.3*

16 65.1� 3.7* 31.3� 1.1* 3.7� 1.1*

aHL-60 cells were treated with 8-chloroadenosine (8-ClA) or a vehicle control for 24 h. DNA contents were
determined byFACSanalysis. Datawere expressed as the percentage of cells in different phase of cell cycle
from one experiment repeated four times (mean�SEM, n¼3).
*P<0.05 as compared with control.

TABLE II. Apoptosis in 8-Chloroadenosine
Treated HL-60 Cell

Groupa
Treat

time (h)
Concentration

(mM)
Apoptosis
rate (%)

Control 24 — 1.65� 0.71
120 — 2.10� 0.94

8-ClA 24 2 5.99� 0.53
24 4 5.59� 0.58
24 8 5.90� 1.13
24 16 7.77� 1.42
24 66 14.1� 2.90
24 330 24.7� 2.11
48 2 5.96� 1.02
72 2 12.3� 1.82
96 2 7.03� 1.61

120 2 8.24� 1.82

aHL-60 cells were treated with 8-chloroadenosine (8-ClA) or
vehicle controls. DNA contents were determined by FACS
analysis. Data were expressed as the percentage of cells in sub-
diploid area (apoptosis) of the analysis from one experiments
repeated four times (mean�SEM, n¼ 3).
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Fig. 2. 8-Chloroadenosine-induced apoptosis in HL-60 cells
determined with DNA fragmentation for endonuclease-cleaved
mono- and oligo-nucleosomes (OD405–490 nm). For comparative
purposes, same amounts of cells (1,000 cell/20ml cell lysis buffer)
were used in the ELISA assay at the indicated time of cell culture

and between the controls (open bars) and various concentrations
of 8-chloroadenosine (solid bars, 2, 8, 16, and 66 mM from left
to the right). Data represent data from one of three repeated
experiments, mean� SEM (n¼ 4).

Fig. 3. 8-Chloroadenosine reduced cyclin D1 and altered
associated proteins expressions in HL-60 cell. A: Decreased
expression of cyclin D1 expression was found in 8-chloroade-
nosine treated HL-60 cells. Time course of cyclin D1 in HL-
60 cells treated by 2 mM 8-chloroadenosine for 24–120 h
(top panel), and by different doses of 8-chloroadenosine treated
at 24 h (bottom panel). B: Increase in p21WAF1/CIP1, p27KIP1, and
transforming growth factor b1 (TGFb1), decrease in c-myc,
and smaller decrease in cdk2/cdk4 expressions were found in
8-chloroadenosine (2 mM) treated HL-60 cells for 24–120 h.
Whole cell extractions (100 mg/lane) were applied on 12.5%

SDS–PAGE gel, and Western blots analysis using different
antibodies were carried out as described in ‘‘Materials and
Methods.’’ Mixture of cell extracts from vehicle control (Control)
at 0–120 h was used for most of blots except the one of showing
cyclin D1 with various concentrations of 8-chloroadenosine
was prepared at 24 h. Cell extracts for TPA-treatment (TPA,
100 ng/ml) were prepared at 24 h. Blots of b-actin (43 kDa) were
used as internal control for protein loading. Data represent data
from one of three repeated experiments and are quantified by
densitometry.
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Induced p21WAF1/CIP1 and p27KIP1

Expressions in 8-Chloroadenosine
Treated HL-60 Cells

HL-60 cells express endogenous trace levels
of p21WAF1/CIP1 and basal levels of p27KIP1

(Fig. 3B, middle two panels). The expression of
p21WAF1/CIP1 was induced by 8-chloroadenosine
(2 mM) after 24 h treatment (136� 12% of con-
trol,P< 0.05), reached themaximumat48–96h
(296� 46%, 48 h; 204� 52%, 72 h; 271� 55%, 96
h) and was maintained until 120 h (150� 24%).
Therewas also a smaller induction of p27KIP1 by
8-chloroadenosine, with a shorter duration of
the effect (147� 28%, 24 h; 153� 30%, 48 h;
120� 22%, 72 h; 112� 15%, 96 h; 109� 10%,
120 h). The TPA-differentiated HL-60 cells (24
h) showed potent inductions of both p21WAF1/

CIP1 (355� 84% of control,P< 0.05) and p27KIP1

(267� 71% of control, P< 0.05), results that are
consistent with previous reports in literature
[Jiang et al., 1994; Schwaller et al., 1995;
Millard et al., 1997].

We also tested alterations of transcriptional
factor c-myc [Philipp et al., 1994; Alexandrow
and Moses, 1995] and transforming growth
factor TGFb1 [Silberstein and Daniel, 1987;
Polyak et al., 1994; Alexandrow and Moses,
1995; Datto et al., 1995] in 8-chloroadenosine
treated HL-60 cells. Our data showed that
HL-60 cells had a high basal expression of
c-myc and with trace levels of TGFb1 ex-
pression. Following treatment of HL-60 cells
with 8-chloroadenosine (2 mM) for 24–120 h, c-
myc expression was decreased (95� 13%, 24 h;
64� 17%, 48 h; 59� 13%, 72 h; 10� 4% 96 h)
and in a measurably undetected level at 120 h.
In contrast, TGFb1 expression was increased
by 24 h exposure to 8-chloroadenosine treat-
ment (112� 8%, P> 0.05), increased slightly
more at 48 h (137� 15%, P< 0.05) and 72 h
(121� 16%),andreachedamaximumeffectat96
h (159� 23%, Fig. 3B, bottom two panels). TPA
also inhibited c-myc expression (measurably
undetected) but had no effect on the level of
TGFb1 expression (89� 25% of control,
P> 0.05) at the 24 h treatment point.

8-Chloroadenosine Attenuated Telomerase
Activity in Treated HL-60 Cells but did not

Directly Influence Enzyme Activity

Telomerase activity is important to maintain
immortality and continuous replication of HL-
60 cell [Bestilny et al., 1996]. Following treat-

ment of HL-60 cell with various concentrations
of 8-chloroadenosine (2–16 mM) for 24–120 h,
telomerase activity in cells extract was decreas-
ed in a dose-dependent and time-dependent
manner (Fig. 4A,B). 8-Chloroadenosine, how-
ever, showed no direct effect on the catalytic
activity of telomerase when tested in vitro. The
values of telomerase activity measured in the
presence and absence of various concentrations
of 8-chloroadenosinewere: 97.1� 8.1% (0.1mM),
83.7� 8.7% (1 mM), 91.6� 4.9% (4 mM), 82.4�
6.2% (8 mM), and 80.7� 9.6% (16 mM) as com-
pared to control activity of 100� 11.2% (by four
different exp). These results indicate that 8-
chloroadenosine suppress theexpression of telo-
merase inHL-60 cell without directly impairing
the catalytic activity to any significant degree.

DISCUSSION

A human leukemia cell line (HL-60) has been
used as amodel system to compare the ability of
certain chemicals to inhibit carcinoma cell
growth and induce a more differentiated phe-
notype. The exact mechanism by which these
agents induce these effects is not fully under-
stood though a number of target enzymes and
regulatory proteins have been proposed to play
a critical role(s) in the processes. Table III lists
several known chemical inducers of HL-60 cells
and some of the proposed mechanisms in-
volved. The inducers include TPA, 1,25D3,
DMSO, RA, and 8-Cl-cAMP and its derivative
8-chloroadenosine. In the present study, we
tested the dose- and time-dependent effects
exhibited by 8-chloroadenosine on cell growth
and differentiation in the model system of
human leukemia and compared its effects to
that reported for other inducers. We found that
8-chloroadenosine exhibits a similar potency of
growth inhibition (IC50¼ 1.35 mM) and differ-
entiation (NBT reduction, EC50¼ 5.75 mM) in
HL-60 cell. The time course of G1/G0 phase
arrest (24 h) in 8-chloroadenosine-treated HL-
60 cell is earlier than the appearance of
granulocytic markers (>72 h). These effects of
8-chloroadenosine are similar to those findings
observed in granulocytic inducers like DMSO
and RA [Bestilny et al., 1996], but differed from
those monocytic inducers like TPA and 1,25D3
[Burger et al., 1994; Zhang et al., 1994; Bestilny
et al., 1996; Wang et al., 1996].

A number of significant effects of 8-chloroa-
denosine were observed: these included a
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reduction in cyclin D1 expression and telo-
merase activity. Conversely, an up-regulation
of p21WAF1/CIP1, p27KIP1, and TGFb1 genes
thought to be important in differentiation,
development and transformation, respectively,
were detected. All these genes changed by 8-
chloroadenosine with the cell-cycle kinetics in
HL-60 cell are not parallel to its prodrug, 8-Cl-
cAMP [Pepe et al., 1991; Park et al., 2002]. 8-
Chloroadenosine also reduced the expression of
c-myc in HL-60 cell, the transcriptional factor
believed to be required for cell growth and
progression of the cell cycle from G1 phase to
S phase involving the G1-phase related cyclins
including cyclin D1 [Philipp et al., 1994;
Alexandrow and Moses, 1995]. A reduction of
c-myc was also detected in 8-Cl-cAMP treated
K-562 leukemia cell [Tortora et al., 1989].
Cyclin D1 is down-regulated when using

granulocytic inducers like DMSO and 8-chlor-
oadenosine but except RA [Burger et al., 1994].
However, anup-regulation of cyclinD1hasbeen
found in monocytic inducers like TPA and
1,25D3. [Akiyama et al., 1993; Burger et al.,
1994; Horiguchi-Yamada et al., 1994; Wang
et al., 1996]. So, the earlier decrease in cyclinD1

at 12–24 h is a factor for ‘‘phenotype selection’’
to granulocytes, and it is accompanied with a
G1/G0 arrest and a slow process of maturation.
The decreased cyclin D1may directly block cell-
cycle progression through G1 phase to S phase
via the reduction of the activated complex of
cyclinD1with cdk2/cdk4 [Prall et al., 1997]. But
if there is no initial decrease in cyclin D1, cells
quickly maturate to monocytes, and then those
cells maturated along lineage of monocytes.
So, the alteration of cyclin D1 is a checkpoint
marker for the selection of promyelotic HL-60
cell towards different lineages of maturation
rather than the specificmarker forG1/G0 arrest.

In certain instances, changes have been
shown to occur in HL-60 cells treated with the
various agents but not with 8-chloroadenosine.
For example, G1/G0 phase-related cdk2/cdk4
are reduced in these cells following treatment
with TPA, RA, or DMSO [Burger et al., 1994;
Horiguchi-Yamada et al., 1994], but are not
changed by 8-chloroadenosine. It is also true of
the G2/M/S cyclins and associated proteins, for
example, cyclin A, cyclin B, cdc2, and cdc25,
where the changes observed in differentiat-
ed HL-60 cells do not correlate with either
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phenotype selection or G1/G0 growth arrest
[Hass et al., 1992; Horiguchi-Yamada and
Yamada, 1993; Burger et al., 1994; Horiguchi-
Yamada et al., 1994]. Even cyclin E, a G1-phase
cyclin, is increased in 1,25D3-treatment, de-
creased in TPA- and RA-treatments, but not
changed in DMSO-treatment [Burger et al.,
1994; Horiguchi-Yamada et al., 1994; Wang
et al., 1996].
In contrast, the expression of p21WAF1/CIP1 is

up-regulated with five known inducers, and
accompanied with an up-regulation of p27KIP1

in three agents including TPA, 1,25D3, and 8-
chloroadenosine. p21WAF1/CIP1 and p27KIP1 are
known for their inhibition in cell-cycle progres-
sion and their regulatory effects on cell dif-
ferentiation. Even regarded as a universal
cdk-inhibitor [Xiong et al., 1993], p21WAF1/CIP1

is obviously characterized by its G1 effects
[Gartel et al., 1996]. This suggests that the
induction of p21WAF1/CIP1 in HL-60 cell by 8-
chloroadenosine is closely related to the role of
G1/G0 arrest and it may play a role in HL-60
differentiation while cell maturation is selected
[Freemerman et al., 1997; Li et al., 1998].
Further, the increased p21WAF1/CIP1 in 8-chlor-
oadenosine treatedHL-60 cell leads to a low rate
in apoptosis, consistent with other inducers
[Jiang et al., 1994; Schwaller et al., 1995;
Bestilny et al., 1996; Wang and Studzinski,
1997; Rahmani et al., 2003]. p27KIP1 plays key
roles in HL-60 cell arrested in G1 phase by TPA
and 1,25D3, but it is not correlated with HL-60
cell differentiation [Wang et al., 1996, 1998;
Millard et al., 1997]. In addition, transform-
ing factor TGFb1 activates p27KIP1 and/or
p21WAF1/CIP1 but inhibits c-myc that regulates
cell-cycle progression [Silberstein and Daniel,
1987; Polyak et al., 1994; Alexandrow and
Moses, 1995;Datto et al., 1995]. So, we attribute
8-chloroadenosine-indued growth inhibition,
G1/G0 arrest and differentiation in HL-60 cells
to a correlation of up-regulation p21WAF1/CIP1

and/or p27KIP1 with the induced TGFb1 but
reduced c-myc.
8-Chloroadenosine reduces telemorase activ-

ity, a critically important enzyme responsible
for the proliferation and immortality of HL-60
cells [Bestilny et al., 1996; Janknecht, 2004].
Other chemical differentiation inducers, for
example, TPA, DMSO, RA, and 1,25D3, also
inhibit the expression of telomerase in these
cells [Bestilny et al., 1996; Reichman et al.,
1997]. This suggests that the telomerase activ-

ity may serve as a cellular marker for the
differentiation process involved in HL-60 cells.
However, the exact mechanism by which 8-
chloroadenosine reduces telomerase activity at
transcriptional and/or translational levels war-
rants further investigation. In this regard,
recently a TGFb1–p21WAF1/CIP1 pathway has
been reported to negatively regulate human
telomerase reverse transcriptase (hTERT) and
an up-regulation of telomerase associate pro-
teins (TP1) as shown by several investigators
[Reichman et al., 1997; Kagawa et al., 1999;
Harada et al., 2000; Henderson et al., 2000;
Rama et al., 2001, 2003; Newbold, 2002;
Zeng and Tu, 2003]. The telomerase-specific
inhibitors, Telomestatin (SOT-095) and poly-
cyclic acridines, were also shown to enhance
p21WAF1/CIP1 expression in human leukemia
cells [Missailidis et al., 2002; Tauchi et al.,
2003], highlighting the importance of this
molecule in the process of mediating the effects
of 8-chloroadenosine on growth inhibition,
G1/G0 arrest and differentiation.

In summary, we have shown that 8-chloroa-
denosine inhibits cell growth, alters differentia-
tion, and arrests the cell cycle at G1/G0 phase,
and that these effects correlated with reduced
levels of cyclinD1and telomerase and increased
levels of p21WAF1/CIP1 in a model system of
human leukemia.
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